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Brugada syndrome is a cardiac arrhythmia disorder associated with sudden death in 47 
young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, 48 
susceptibility genes remain largely unknown. Here we performed a genome-wide 49 
association meta-analysis comprising 2,820 unrelated cases with Brugada syndrome and 50 
10,001 controls and identified 21 association signals at 12 loci (10 novel). SNP-heritability 51 
estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 52 
21 susceptibility variants demonstrate varying cumulative contribution of common risk 53 
alleles among different patient sub-groups, as well as genetic associations with cardiac 54 
electrical traits and disorders in the general population. The predominance of cardiac 55 
transcription factor loci indicates that transcriptional regulation is a key feature of 56 
Brugada syndrome pathogenesis. Furthermore, functional studies conducted on MAPRE2, 57 
encoding the microtubule plus-end-binding protein EB2, point to microtubule-related 58 
trafficking effects on NaV1.5 expression as a novel underlying molecular mechanism. 59 
Taken together, these findings broaden our understanding of the genetic architecture of 60 
Brugada syndrome and provide new insights into its molecular underpinnings.  61 
 62 
 63 
Brugada syndrome (BrS) is a cardiac disorder characterized by hallmark ST-segment 64 
elevation in the right precordial leads of the electrocardiogram (ECG) and increased risk of 65 
sudden death in young adults1,2. Rare coding variants in SCN5A, encoding the cardiac 66 
sodium channel NaV1.5 which underlies the sodium current (INa), are reported in 67 
approximately 20% of cases3,4. Other susceptibility genes contributing to the disorder 68 
remain largely unknown. In a genome-wide association study (GWAS) conducted in 312 69 
patients with BrS, we previously identified 3 common susceptibility variants and provided 70 
evidence for a complex genetic architecture5. Here we extended this original association 71 
scan to a large meta-analysis comprising 2,820 unrelated cases and 10,001 controls of 72 
European ancestry (Supplementary Table 1, Supplementary Table 2), testing 6,990,521 73 
variants with a minor allele frequency (MAF) ≥0.01 (Figure 1, Supplementary Fig. 1, 74 
Supplementary Fig. 2). A total of 12 loci (10 novel) reached the genome-wide statistical 75 
significance threshold of P<5x10-8 (Table 1; Supplementary Fig. 3, panels a-l). Conditional 76 
analysis uncovered 7 additional association signals at genome-wide significance at the 77 
chromosome 3 locus, and an additional signal at the chromosome 6 and the chromosome 7 78 
loci (Table 1; Supplementary Fig. 3, panels m-u). Analysis of SNP-based heritability (h2

SNP) 79 
demonstrated that a substantial portion of susceptibility to BrS is attributable to common 80 
genetic variation. h2

SNP estimates ranged from 0.17 (standard error, SE, 0.035) using LDSC6 81 
to 0.34 (SE 0.02) using GREML7, assuming a disease prevalence of 0.05%8, with 24% of the 82 
total SNP-based heritability being explained by the 12 loci reaching genome-wide 83 
significance (Supplementary Table 4).  84 
 85 
Seven association signals (defined by the lead SNP and SNPs with r2 ≥ 0.6) at the 86 
chromosome 3 locus overlapped SCN5A and one overlapped the neighboring SCN10A gene 87 
encoding the sodium channel isoform NaV1.8 (Supplementary Fig. 4, panels a-h). While 88 
previous work9 proposed that the latter signal may act through regulation of SCN5A 89 
expression, a possible involvement of SCN10A itself is suggested by a significant eQTL in left 90 
ventricular tissue (P=5.29x10-6, colocalization posterior probability (CLPP) = 0.16) 91 
(Supplementary Fig. 4, panel h, Supplementary Table 3), whereas no eQTL was detected 92 
for SCN5A (P=0.27). Notably, 6 association signals overlapped genes encoding cardiac 93 
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developmental transcription factors (HEY2, TBX20, ZFPM2, GATA4, WT1, TBX5) and 4 were 94 
<300kb from such genes (TBX20, IRX3/IRX5, HEY2)10. In support for the involvement of 95 
transcription factor genes, an enrichment in genes encoding DNA binding proteins was 96 
found at BrS GWAS loci by permutation testing (one-tailed permutation P = 1 × 10−4; 97 
Supplementary Fig. 5). The transcription factors HEY2, TBX20, GATA4, TBX5 and IRX3/IRX5 98 
are established regulators of ion channel expression in the adult heart, including that of 99 
NaV1.511–15, suggesting that modulation of ion channel expression is an important 100 
mechanism in BrS. Potential regulatory effects of the transcription factors WT1 and ZFPM2 101 
on ion channel expression have not yet been investigated. One association signal 102 
overlapped PRKCA (supported by a co-localizing eQTL (P=4.63  × 10−28, CLPP = 0.99); 103 
(Supplementary Fig. 4, panel s, Supplementary Table 3), which encodes protein kinase C 104 
alpha involved in contractility and calcium handling in cardiomyocytes16. Lastly, two 105 
association signals overlapped genes encoding microtubule or myofiber associated proteins, 106 
namely MAPRE217 and MYO18B18. A full annotation of the association signals (see Online 107 
Methods) is presented in Supplementary Table 3 and Supplementary Fig. 4. 108 
 109 
We performed a transcriptome-wide analysis (TWAS)19 based on predicted gene expression 110 
in cardiac tissues20 and identified 24 associations corresponding to 20 unique genes at the 111 
Bonferroni-corrected threshold of P<5.2x10-6 (Supplementary Table 5). Eighteen of these 112 
genes are within ≈0.5 Mb of GWAS signals while two point to additional loci 113 
(Supplementary Table 5). MAGMA gene property analysis for tissue specificity21 as well as 114 
enrichment analysis using LDSC-SEQ22 and GARFIELD23 identified left ventricle, right 115 
ventricle and fetal heart, respectively, as significantly associated with BrS (Supplementary 116 
Fig. 6 and 7, Supplementary Tables 6 and 7). MAGMA gene-set analysis21 identified, 117 
amongst others, gene sets related to heart development and regulation of heart growth 118 
(Supplementary Table 8), which may point to a broader role of transcriptional dysregulation 119 
in the pathogenesis of BrS, beyond regulation of ion channel expression. 120 
 121 
MAPRE2 overlaps the association signal tagged by rs476348 and its causal role is supported 122 
by chromatin interaction between its promoter region and the association signal and by a 123 
significant eQTL (P=2.9x10-5, CLPP=0.10) Supplementary Fig. 4, panel t, Supplementary 124 
Table 3), where the BrS risk allele is associated with lower MAPRE2 expression in left 125 
ventricular tissue compared to the non-risk allele. MAPRE2 encodes the microtubule plus-126 
end binding protein EB2, a regulator of microtubule organization17. While effects on 127 
transcription factor expression and ion-channel patterning are established molecular 128 
mechanisms associated with BrS susceptibility5,13, mechanisms involving microtubule 129 
function and ion channel trafficking, as suggested by the association signal near MAPRE2, 130 
have not yet been explored. We therefore generated loss-of-function mutants (KO) using 131 
CRISPR/Cas9 in both zebrafish (Supplementary Fig. 8) and human induced pluripotent stem 132 
cell derived cardiomyocytes (hiPSC-CMs) (Supplementary Fig. 9) to study the role of 133 
MAPRE2 in cardiac electrophysiology. Using optical mapping, we observed a significantly 134 
lower conduction velocity and action potential upstroke velocity (Vmax) in zebrafish hearts 135 
isolated from mapre2 KO compared to control (CTRL) larvae (Fig. 2a,b). Similarly, Vmax 136 
observed in single MAPRE2 KO hiPSC-CMs was lower than isogenic control hiPSC-CMs 137 
measured using manual patch clamp (Fig. 2d,e). The lower Vmax observed in both mutant 138 
zebrafish and hiPSC-CMs suggested lower INa. This was confirmed by automated patch-139 
clamp measurements which demonstrated ≈50% less INa density in MAPRE2 KO compared to 140 
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control hiPSC-CMs (Fig. 2f, left panel). Additionally, a small positive shift in voltage 141 
dependency of activation was observed, while voltage dependency of inactivation and 142 
recovery from inactivation were not different between control and KO cells (Supplementary 143 
Fig. 10a,b,c). Whereas no repolarization abnormalities were observed in intact mapre2 KO 144 
zebrafish hearts (Fig. 2c), significant action potential duration (APD) prolongation was 145 
observed in single MAPRE2 KO hiPSC-CMs (Fig. 2d and e). This APD prolongation may be 146 
explained by the significantly lower repolarizing outward current (Ioutward) amplitude in the 147 
KO hiPSC-CMs (Fig. 2f, right panel), although the voltage-dependency of activation was 148 
unchanged (Supplementary Fig. 10d,e). Together with the multiple levels of evidence that 149 
implicate conduction slowing and decreased INa in the pathogenesis of BrS, and previous 150 
work linking end-binding proteins to ion channel targeting to the plasma membrane24, our 151 
data suggest that modulation of microtubule function and subsequent alterations in ion 152 
channel trafficking may be a novel molecular mechanism contributing to BrS. Future work is 153 
needed to address the underlying molecular mechanisms and provide insight into the ion 154 
channels that underlie the observed abnormalities in repolarization, although a role for 155 
prolonged repolarization is not reconcilable with current hypotheses on BrS pathogenesis 25.  156 
 157 
To further explore the genetic architecture of BrS in specific patient subgroups as well as the 158 
association of common variants in aggregate with disease severity, we calculated a 159 
polygenic risk score (PRSBrS) per individual based on the 21 risk alleles and their 160 
corresponding effect sizes. Of the 2,469 study participants tested, 454 (18.4%) carried a rare 161 
pathogenic or likely pathogenic variant in SCN5A (SCN5A+). SCN5A+ cases had a lower mean 162 
PRSBrS compared to cases without such variants (SCN5A–) (8.8±1.1 vs. 9.3±1.0; P=2.1x10-17; 163 
Fig. 3a), suggesting a higher burden of BrS-associated common variants in SCN5A– patients, 164 
as similarly shown in other heritable diseases26,27. Using LDSC, we observed a strong 165 
genome-wide correlation between the genetic contributors in SCN5A+ and SCN5A– patient 166 
subgroups (rg=0.82; SE=0.2), suggesting the involvement of the same risk alleles. Out of 167 
2,367 BrS cases with complete data, 228 had a life-threatening arrhythmic event (LAE) at 168 
diagnosis or during follow-up (median age at last follow-up was 50.0 years, interquartile 169 
range 39.5 - 60.7). Although SCN5A+ cases had a higher risk for LAE compared to SCN5A– 170 
cases (HR 1.87; 95% CI 1.37-2.55; P=8.1x10-5; Supplementary Table 9), PRSBrS was not 171 
significantly associated with LAE in BrS cases (P=0.30, Supplementary Fig. 11). On the other 172 
hand, PRSBrS was significantly higher in BrS cases that presented with a spontaneous type 1 173 
BrS ECG compared to those with a type 1 BrS ECG after sodium channel blocker challenge 174 
(9.3±1.1 vs. 9.1±1.1 P=1.7x10-5; Fig. 3b), an effect that seemed more pronounced in the 175 
subgroup of SCN5A– cases (9.2±1.0 vs. 9.5±1.1; P=3.5x10-8; Supplementary Fig. 12). These 176 
data support the concept that disease susceptibility in different individuals relies upon 177 
varying contributions of multiple factors including both rare and common genetic variations 178 
and exposure to sodium channel blockade. 179 
 180 
To explore the genetic relationship of BrS with other traits, we performed a phenome-wide 181 
association study (PheWAS) in the UK Biobank using PRSBrS, applying Bonferroni correction 182 
(P<7x10-4) to define statistical significance (Supplementary Tables 10-12 and Fig. 4A). PRSBrS 183 
was associated with greater risk for atrioventricular conduction disorders (P=1.5x10-9; 184 
OR=1.16 [1.10-1.21] per SD increase), as well as longer ECG activation/conduction times 185 
reflected in the P-wave duration (P=5.3x10-9; β=0.76 ms, SE=0.13), PQ interval duration 186 
(P=1.9x10-45; β=2.70 ms, SE=0.19), and QRS duration (P=4.2x10-55; β=1.23 ms, SE=0.08). This 187 



6 
 

underscores the important role of conduction slowing in the pathogenesis of BrS, and is 188 
further supported by a significant positive genome-wide correlation between BrS and QRS 189 
duration28 (rg=0.44, P=1x10-8; Supplementary Table 13). In contrast, PRSBrS was negatively 190 
associated with the QT interval duration (P=4.8x10-16; β=-1.56 ms, SE=0.19), consistent with 191 
suggestions of higher cardiomyocyte phase 1 repolarizing drive in BrS13,25. PRSBrS was also 192 
negatively associated with the occurrence of atrial fibrillation (AF) or flutter (P=6.2x10-13; 193 
OR=0.94 [0.92-0.95]). The effects of each of the 21 BrS risk alleles in previously published 194 
GWAS of PQ29, QRS28, QT30 and AF31 are generally concordant with the aggregate effect of 195 
those alleles (PRSBrS) in the PheWAS (Fig. 4B, Supplementary Table 14-17, Supplementary 196 
Fig. 13). One exception is the BrS risk allele near MYO18B (rs133902-T) which was also 197 
associated with greater risk for AF (P=9x10-10 in Nielsen et al32, and P=1x10-7 in Roselli et al31; 198 
Supplementary Fig. 13). This suggests that although changes in conduction velocity through 199 
sodium channel expression effects modulate risk for AF and BrS in opposite directions, some 200 
disease mechanisms such as those involving structural proteins (e.g. MYO18B) may be 201 
shared in both arrhythmias, with concordant effects. We also observed novel associations of 202 
PRSBrS with non-electrical phenotypes namely body mass index (log-transformed; P=6.2x10-6; 203 
β= 0.0012, SE=0.0003) and systolic blood pressure (P=4.3x10-5; β=0.12 mmHg, SE=0.03; 204 
Supplementary Table 12). Of note, a recent study identified a modulatory effect of 205 
hypertension in cardiac sodium channel disease33. Lastly, a lookup of loci previously 206 
associated with ECG traits and AF identified 9 additional novel loci associated with BrS at a 207 
Bonferroni-corrected P<1.9x10-4 (Supplementary Table 18). 208 
 209 
In conclusion, several important findings emerge from this work: (1) We identified a total of 210 
12 loci, of which 10 novel, associated with BrS, a rare disease and a significant cause of 211 
sudden cardiac death in young adults. Of these loci, 3 harbour multiple association signals. 212 
(2) The 8 independent association signals at the SCN5A-SCN10A locus highlight the primacy 213 
of reduced sodium channel function in BrS susceptibility, whereas the 8 loci harboring 214 
cardiac transcription factor genes point to transcriptional regulation as a key feature of BrS 215 
pathogenesis. (3) Functional studies of MAPRE2 support a novel mechanism of NaV1.5 216 
modulation via the microtubule network in BrS pathogenesis.  (4) Analyses using the UK 217 
Biobank highlight a genetic overlap between the BrS and cardiac electrical traits and 218 
common disorders in the general population.  (5) Polygenic risk score analyses support the 219 
concept that disease threshold in different individuals with BrS is reached by varying 220 
contributions of rare SCN5A variants, common risk alleles and sodium channel blockade. 221 
Taken together, these findings broaden our understanding of the genetic architecture of BrS 222 
and provide new insights into its molecular underpinnings. 223 
  224 
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Table 1: Lead SNPs and effect estimates for genome-wide significant association signals (P<5x10-8) in the BrS GWAS meta-analysis 548 

Locus Lead SNP Genomic position 
(hg19) Risk allele Other allele 

Risk allele 
frequency

in cases 

Risk allele 
frequency 
in controls 

OR [95% CI] P value Nearest gene 

1 

rs7638909* 3:38594973 G T 0.32 0.24 1.28 [1.17 - 1.40] 2.79E-08 SCN5A 
rs62241190* 3:38607468 G A 0.06 0.03 1.96[1.63 - 2.32] 8.56E-14 SCN5A 
rs7374540* 3:38634142 C A 0.51 0.39 1.72 [1.61 - 1.81] 3.56E-57 SCN5A 
rs7433206* 3:38657708 A T 0.45 0.42 1.48 [1.37 - 1.60] 9.52E-24 SCN5A 

rs34760424* 3:38683018 G T 0.98 0.94 2.32 [1.96 - 2.70] 3.03E-23 SCN5A 
rs41310232* 3:38689242 A G 0.16 0.09 1.56 [1.40 - 1.74] 1.19E-15 SCN5A 
rs6782237* 3:38696553 C G 0.78 0.68 1.74 [1.61 - 1.87] 1.05E-47 SCN5A 

rs6801957 3:38767315 T C 0.65 0.42 2.49 [2.34 - 2.65] 1.30E-180 SCN10A 

2 
rs6913204* 6:125664540 C T 0.51 0.47 1.22 [1.13 - 1.29] 1.30E-08 HDDC2 
rs9398791 6:126115821 C T 0.61 0.51 1.53 [1.44 - 1.63] 1.49E-39 HEY2, NCOA7 

3 
rs11765936 7:35349146 G T 0.18 0.15 1.37 [1.25 - 1.49] 4.30E-11 TBX20 
rs340398* 7:35413788 C T 0.42 0.38 1.22 [1.15 - 1.30] 1.76E-09 TBX20 

4 rs804281 8:11611865 G A 0.63 0.58 1.22 [1.15 - 1.30] 1.22E-09 GATA4 
5 rs72671655 8:106347897 T A 0.97 0.95 1.85 [1.59 - 2.22] 2.51E-13 ZFPM2 
6 rs72905083 11:32474374 A G 0.1 0.08 1.43 [1.27 - 1.60] 2.09E-09 WT1 

7 rs883079 12:114793240 C T 0.34 0.28 1.25 [1.16 - 1.33] 1.59E-10 TBX5 

8 rs11645463 16:54456353 A G 0.59 0.54 1.22 [1.15 - 1.30] 1.27E-09 IRX3 
9 rs72622262 16:54662944 C G 0.87 0.83 1.36 [1.25 - 1.49] 1.37E-11 CRNDE, IRX5 

10 rs12945884 17:64300281 T C 0.58 0.53 1.2 [1.12 - 1.28] 3.31E-08 PRKCA 
11 rs476348 18:32670021 C T 0.73 0.69 1.25 [1.16 - 1.33] 2.64E-09 MAPRE2 
12 rs133902 22:26164079 T C 0.48 0.43 1.21 [1.13 - 1.29] 7.73E-09 MYO18B 

*Variants associated with BrS in conditional analyses. Abbreviations: 95% CI, 95% confidence interval; OR, odds ratio referring to each unit increase in the risk 549 
allele. Confidence intervals are given for a nominal p-value of 0.05 in order to allow comparability with other studies and reports. 550 
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Fig 1: Manhattan plot of genome-wide association meta-analysis comprising 2820 551 
unrelated Brugada Syndrome cases and 10001 controls. The association P values were 552 
derived from a meta-analysis of the 10 GWAS strata using a fixed effects model with an 553 
inverse-variance weighted approach. The y-axis has breaks to emphasize the novel loci. The 554 
red and blue lines indicate the genome-wide significance (P<5x10-8) and suggestive 555 
significance (P <1x10-6) thresholds, respectively. Genes at novel loci are depicted in red. 556 
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Fig 2: Loss of MAPRE2 leads to lower conduction velocity, action potential upstroke velocity and sodium current. (a) Left panel. 578 
Representative isochrone maps of hearts isolated from 5 day post-fertilization zebrafish larvae injected with tracrRNA/Cas9 and multiple 579 
gRNAs targeting mapre2 (mapre2 KO) or tracrRNA/Cas9 without gRNA (CTRL). The dotted squares reflect the main ventricular area in the 580 
hearts from which the various parameters are measured.  Right panel. Average ventricular conduction velocity (CV) in CTRL and mapre2 KO 581 
hearts. (b) Left panel. Representative maximum action potential (AP) upstroke velocity (Vmax) maps from zebrafish hearts. Right panel. 582 
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Average Vmax in CTRL and mapre2 KO hearts. (c) Left panel. Representative maps of AP duration at 80% repolarization (APD80) in isolated 583 
hearts paced at 100 bpm. Right panel. Average APD80 in CTRL and mapre2 KO hearts. (d) Representative APs at 1 Hz pacing from single 584 
human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) with CRISPR/Cas9–mediated MAPRE2 knockout and isogenic control 585 
(CTRL) hiPSC-CMs. A constant ohmic current was injected to set the membrane potential just before the APs at approximately -80 mV to 586 
overcome the depolarized state of the hiPSC-CMs (see Online Methods). Inset. First derivative of the AP upstroke velocity (Vmax). (e) Average 587 
Vmax and APD at 30 and 90% repolarization (APD30 and APD90. respectively) in CTRL and MAPRE2 KO hiPSC-CMs. Maximal diastolic potential 588 
and AP amplitude did not differ significantly between CTRL and MAPRE2 KO hiPSC-CMs (data not shown) (f) Left panel. Average current-589 
voltage relationships of the sodium current (INa). Right panel. Average repolarizing outward current (Ioutward) in CTRL and MAPRE2 KO hiPSC-590 
CMs. Insets. Voltage protocol used.  Results are expressed as mean ± s.e.m. Numbers in the bar graph refer to the number of hearts or cells 591 
studied. * P <0.05, ** P <0.01 vs. CTRL.  592 
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 594 
 595 
A       B   596 

 597 

Fig 3: Distribution of PRSBrS in specific patient sub-groups. (A) Histograms displaying PRSBrS 598 
distribution in BrS cases carrying a rare pathogenic or likely-pathogenic variant in SCN5A 599 
(SCN5A+; blue) compared to BrS cases without such variants (SCN5A–; red).  (B) Histograms 600 
displaying PRSBrS distribution in BrS cases presenting with a spontaneous type 1 BrS ECG 601 
(blue) compared with those presenting with a type 1 BrS ECG only after sodium channel 602 
blocker challenge (drug-induced; red). PRSBrS was calculated per individual based on the 21 603 
BrS risk alleles and their corresponding effect sizes. Reported P values refer to the 604 
difference in PRSBrS units between two groups. Dashed lines showing the mean PRSBrS for 605 
each group. 606 

 607 
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 609 
Fig 4. Associations between polygenic susceptibility to Brugada syndrome and common 610 
cardiovascular diseases and traits. Panel A shows the results of the phenome-wide association 611 
analysis (PheWAS) for the Brugada syndrome (BrS) polygenic risk score (PRSBrS) among individuals of 612 
European ancestry from the UK Biobank. Phenotypes significantly associated with PRSBrS and 613 
phenotypes relevant to the heart are shown on the x-axis (5 electrocardiographic traits are depicted 614 
on the right of the plot); the P values from multiple regression are depicted on the y-axis. Red circles 615 
indicate that polygenic predisposition to BrS is associated with a positive beta (e.g. increased risk of 616 
the condition or higher value for continuous traits), whereas blue circles indicate that polygenic 617 
predisposition to BrS is associated with a negative beta (e.g. decreased risk of the condition or lower 618 
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value). We set the significance threshold to P < 0.0007 after Bonferroni correction (P < 0.05/70), 619 
shown as dotted colored lines. The grey dotted lines indicate the nominal significance threshold (P < 620 
0.05). The complete PheWAS results are shown in Supplementary Tables 11 and 12 for dichotomous 621 
and continuous traits, respectively. Panel B depicts a heat-map of associations between BrS risk 622 
alleles and atrial fibrillation/flutter (AF), PR-interval (PR), QRS-complex duration (QRS) and QT 623 
interval duration (QT) from previously published GWAS28–31. Each row represents an independent 624 
BrS risk allele, while each column represents a phenotype. Red indicates that the BrS risk allele (or a 625 
proxy with R2 >0.8) is associated with higher risk of AF or prolongation of the electrocardiographic 626 
interval; blue indicates that the BrS risk increasing allele is associated with lower risk of AF or 627 
shortening of the interval. The darkest red and blue colors represent conventional genome-wide 628 
significance in the published GWAS (P < 5x10-8).  629 
 630 
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